

Cracking the Code to Encryption

Activity Rundown:
Have you ever wanted to send secret messages to someone without anyone being able to

understand what you’re saying? Whether you want to hide messages from your parents,

teachers, or friends, we have a sure fire way to help you get your message across! Pay close

attention to the following project and you might be able to go undetected!

You will need:
╃ Paper

╃ Pencil

╃ Patience

Let’s do it!
1) The first thing you will want to do is take a look at the “background” information

section of this project! It is a fun read and gives a thorough layout of how encryption

came to be, the different methods used, and how you can use it!

2) Every encryption code has 5 basic components (the first 3 are what you want to

convey to the kids; the last two are pretty complicated):

a. Plain text (the message in normal english we want to encrypt)

b. Cipher text (the encrypted version of the plain text)

c. Key(s) (the link between the plaintext and cipher text).

d. Encryption Function (the mapping between the plain text and cipher text using a

key).

e. Decryption Function (maps cipher text to plain text with a key)

3) The type of encryption we will be trying today is called a Caesar cipher!

4) For the first activity each letter will correspond with its chronological number.

A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

5) Write an example text on your piece of paper to encrypt. Start with “HELLO”

6) Write “HELLO” on your paper and as each letter is answered write the corresponding

number underneath.

a) You should get the answer of : 8-5-12-12-15

7) Next use this same sequence to build an encryption for your name.

a) e.g. ANDREW = 1- 14-4-18-5-23

8) Next come up with a key. This can be any number from 1 – 25. This key is added to

the original numerical value to further develop your encryption. For example, if you

decide to make your Key = 3, then you would add that to each of the values in your

encryption. This can be seen in this example

Original: ANDREW

Numbers : 1-14-4-18-5-23

Now with the added Key=3

A B C D E F G H I J K L M

1+3
=4

2+3=
5

3+3=
6

7 8 9 10 11 12 13 14 15 16

N O P Q R S T U V W X Y Z

17 18 19 20 21 22 23 24 25 26 24+3=
27?

28? 29?

ANDREW = 4-17-7-21-8-26

D E F G H I J K L M N O P

4 5 6 7 8 9 10 11 12 13 14 15 16

Q R S T U V W X Y Z A B C

17 18 19 20 21 22 23 24 25 26 27? 28? 29?

The message should now read DQGUHZ

9) In order to decrypt a message, you do the opposite. Take your encrypted message,

convert it to its number format, SUBTRACT the key, and convert it back to its letter

format.

10) When you add the key you cannot get a number larger than 26 (as this corresponds

to Z, the last letter in the alphabet). If this happens, start again at 1.

a) For example if your message is “XO” (24 15) in number format) and your key

is 3, you would get 25 18 once you add the key. However, you can’t go past

26, so as soon as you reach 26 every number afterwards would start from 1

again.

A B C D E F G H I J K L M

4 5 6 7 8 9 10 11 12 13 14 15 16

N O P Q R S T U V W X Y Z

17 18 19 20 21 22 23 24 25 26 1 2 3

11) The same goes when decrypting a message, you can’t go below 1.

a) For example if your encrypted message is “DT” (4 20) and your key is 6, you

would get -2 14 once you subtract the key. However, you can’t go below 1, so

as soon as you reach 1 every number afterwards would count down from 26.

I.e. 4 – 6 = 24 (3…2…1…26…25…24).

12) Take a piece of paper and write a message and encrypt it for someone in the house

or around you. Tell them what the key is, so they can decode it. If they find that too

easy, have them try and decode the message without knowing the key. To do this,

they would have to try every number from 1 – 25 for the key until they get a message

that makes sense.

Background:
In the language of mathematics:

- The cipher text is the output of the encryption. c = E(p, k), where the encryption

function E() takes the arguments p (the plain text) and k (the key), and performs

mathematical operations on them.

- The plain text is the output of the decryption. p = D(c, k), where the decryption

function D() takes the arguments c (the cipher text) and k (the key), and performs

mathematical operations on them.

Caesar Cipher:

In a caesar cipher the 5 components are:

1. Plain text (the text you wish to encrypt)

2. Cipher text (the encrypted text)

3. Key (an Integer between 0 and 25)

4. Encryption Function: adds the value of the key to the index of each letter in the plain

text to find the index of the new letter in the ciphertext.

5. Decryption Function: subtracts the value of the key from the index of each character

in the ciphertext to get the index of each plain text letter.

The process of reaching the end of the alphabet and looping back around to the beginning is

the concept of a modulus.

- The index of the cipher or plain text is always modified with the length of the

alphabet.

-

Alphabetic Cipher :

- Instead of the key being an integer, the key is 26 letters of the alphabet scrambled in

any order. Encrypt by mapping the letters of the alphabet onto the key based on their

index.

- Suppose your key is “XGR...” (contains all 26 letters of the alphabet)

- Then you map all A’s in your message to “X”

- Map all B’s in your message to “G”

- Map all C’s in your message to “R”, etc.

- Reverse this for decryption

- How many possible cipher texts are there for each plain text? (answer is ~4*10^26,

or 26!, one for each possible key)

- What weaknesses make this scheme “crackable”?

- Cracking this code by “brute force”, i.e. by trying every possible key would take a very long

time! However distribution of letters in language is not uniform, “e”, “t”, “s”, “a” are more

common than “g”, “h”, “x”, “z”, etc… we can eliminate a HUGE number of possible cipher

texts based on this. Moreover, repeat letters are preserved (i.e. “bottle” = “adllef”; the “ll”

shows that we have repeat letters). This again limits the possible number of cipher texts as

there are some double letters that are more obvious than others.

Pig Pen Cipher:

Vernam Cipher:

- The key is an infinite list of random integers from 1 - 25 (i.e. 3 10 5 6 13 11 4 2 3 16 9

8…)

- Convert each plain text character to its integer equivalent (A =1, B =2 etc..)

- Add the each corresponding random number from the key to the index of each letter

in the plain text and modulo 26 (i.e. loop back to 1 after 26, same as for the Caesar

Cipher).

- For example, plain text = “HELLO” = 8 5 12 12 15

- Key = 3 10 5 6 13 11 4 2 3…

8 + 3 = 11

5 + 10 = 15

12 + 5 = 17

12 + 6 = 18

15 + 13 = 28 = 2

Cipher text = 11 15 17 18 2

- Convert this number back to a letter to make the cipher text.

 i.e. cipher text = 11 15 17 18 2 = “KOQRB”

- Is this harder or easier to “crack” than the alphabetic cipher? Why?

- It is harder, it eliminates the problems we see with alphabetic ciphers (double letters,

common letters)

- Is this breakable?

- In a perfect world, the only way to break this code is to try EVERY possible key. This would

take an incredible amount of time!

- In practice, we cannot generate true random numbers in a computer if we can find the

“random” number generator the computer used we can reduce the number of possible keys

Common problem with ciphers listed above :

They all require everyone to have a copy of everyone else’s key! This is very inefficient.

RSA encryption (the best encryption scheme we have) uses a scheme where everyone has a

public key and private key. You give away your public key and keep your private key. The keys

are constructed so that if you encrypt something with a public key, the corresponding

private key can decrypt it! RSA relies on there being no good algorithm for finding the prime

factors of any VERY large number (100200 digits). HTTPS communication is based

on RSA encryption.

Resources:

https://www.cerias.purdue.edu/education/k-12/teaching_resources/lessons_presentations/
cryptology.html

https://www.cerias.purdue.edu/education/k-12/teaching_resources/lessons_presentations/cryptology.html
https://www.cerias.purdue.edu/education/k-12/teaching_resources/lessons_presentations/cryptology.html

Reach out!

We would love to hear from you about all the amazing STEM projects you are doing at

home! Show us your finished products on any of the following social media platforms by

tagging us or by using the following hashtags. We hope these projects have brought some

excitement to your day during these difficult times.

Let us know how we did! Please click here to fill out a short survey on how well we did and

what you would like to see more of in the future. Thank you!

Twitter: @MyMindsInMotion

Facebook: @mindsinmotion2014 & @ucactiveliving

Instagram: @ucalgaryactive

Please use the following hashtags!

#ucalgarycamps #ucalgarytogether

https://forms.gle/Y4Fk4Fn92yu2apBo8

